Band-pass filter-like antenna validation in an ultra-wideband in-car wireless channel

نویسندگان

  • Ignacio J. García Zuazola
  • Leire Azpilicueta
  • Ashwani Sharma
  • Hugo Landaluce
  • Francisco Falcone
  • Ignacio Angulo
  • Asier Perallos
  • William G. Whittow
  • Jaafar M. H. Elmirghani
  • John C. Batchelor
چکیده

Ultra-wide band (UWB) is a very attractive technology for innovative in-car wireless communications requiring high data rates. A designated antenna, which presents a reflection coefficient (S11) matched band comparable to the Band Pass Filters (BPF) normally required at the transducers, plays a positive contribution in this in-car application and was validated for the scenario. The inherited BPF-like response of the antenna relaxes the specification of the front-end BPF components of the transceivers. The in-car propagation channel was modelled and used to validate the BPF-like antenna. For the modelling, a comprehensive set of welldefined measurements (using a standard antenna) were used to set-up the in-car channel simulator and simulated results were used to validate the BPF-like antenna. Additionally, the performance of the UWB radio system is studied and the probability of errors over the communication channel compared using the standard and the BPF-like antenna by predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra Wideband Monopole Antenna Excited by a Capacitive Coupling Feed with Double Band Notch Function

This paper presents the results of a new monopole antenna that exhibits 2.75-10.7 GHz performance. The proposed antenna consists of a radiating patch with notches excited by capacitive coupling feed. Also, the antenna’s truncated ground-plane incorporates a central notch. This modification significantly improves the antenna’s impedance bandwidth by 118% over an ultra-wideband frequency range. T...

متن کامل

A Novel Compact Ultra-Wideband Antenna with Single and Double Band Rejection

Band-notch characteristic has been of great interest recently to overcome the electromagnetic interference of Ultra-wideband systems (UWB) with other existing ones. In this paper, we present a novel microstrip-fed antenna with band rejection property appropriate for UWB applications. Band-notch characteristic has been achieved by adding a rectangular resonant element to the ground section. A pr...

متن کامل

An Improved CPW-Fed Printed UWB Antenna With Controllable Band-notched Functions

A newly designed printed slot antenna is presented that incorporates variable two band-notched functions for ultra-wideband (UWB) applications. The two band notches of this coplanar waveguide (CPW) fed antenna are achieved by an M-shaped slot (MSS) embedded in the radiating element and a C-shaped strip (CSS) close to ground plane, therefore two very narrow rejected properties in the wireless lo...

متن کامل

Modified U-Slot Stacked Micro-Strip Patch Antenna for Ultra-Wideband Applications in S Band, C Band and X Band

The U-slot micro-strip patch antennas were originally developed for bandwidth broadening applications. This study presents a transmission line feed to modify the U-slot stacked rectangular micro-strip patch antenna for Ultra-Wide Band (UWB) communications. The modified antenna has a U-cut loaded with parallel slits and corner slots and is printed on a dielectric substrate of FR4 with relative p...

متن کامل

Design of Orthogonal UWB Pulse Waveform for Wireless Multi-Sensor Applications

In this work we propose an orthogonal pulse waveform for wireless ultra wideband (UWB) transmission. The design is based on an ideal low-pass prototype filter having a windowed sinc impulse response. The frequency response of the prototype filter is transferred to the high frequency region using a specific sign modulator. The UWB pulse waveform comprises of the weighted summation of the left si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IET Communications

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015